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Abstract—The effect of massive blowing rates on the steady laminar compressible boundary-layer flow with
variable gas properties at a 3-dim. stagnation point (which includes both nodal and saddle points of
attachment) has been studied. The equations governing the flow have been solved numerically using an
implicit finite-difference scheme in combination with the quasilinearization technique for nodal points of
attachment but employing a parametric differentiation technique instead of quasilinearization for saddle
points of attachment. It is found that the effect of massive blowing rates is to move the viscous layer away from
the surface. The effect of the variation of the density— viscosity product across the boundary layer is found to
be negligible for massive blowing rates but significant for moderate blowing rates. The velocity profiles in the
transverse direction for saddle points of attachment in the presence of massive blowing show both the reverse
flow as well as velocity overshoot.

NOMENCLATURE

a,b, velocity gradients in the x and y direc-
tions, respectively ;

c, ratio of velocity gradients, b/a;

C,C;,  skin-friction coefficients in the x and y
directions, respectively;

1, dimensionless stream function such that
1= uu;

S mass transfer parameter,
—(pWa/(pepea)' 3

o skin-friction parameter in the x direction;;

g, dimensionless enthalpy, h/h,;

G dimensionless enthalpy at the wall (wall
temperature), h,/h. ;

h, enthalpy;

H, total enthalpy;

N, ratio of the density—viscosity product
across the boundary layer, pu/p. .
g ",

Pr, Prandtl number;

Qs local heat-transfer rate at the wall;

Re,, local Reynolds number, ax?/v, ;

St, Stanton number (heat-transfer
parameter);

T, temperature;

u,n,w, velocity components in the x,y,z direc-
tions, respectively ;

x,y,z,  principal, transverse and normal direc-

tions, respectively.
Greek symbols

#, similarity variable,
(peal/ue)' 2 (p/p.) dz;

* To whom correspondence should be addressed.

i, coefficient of viscosity;

Ve, kinematic viscosity at the edge of the
boundary layer;

0, density;

To Ty shear stresses at the wall in the x and y
directions, respectively;

o, dimensionless stream function such that
¢ = vlv;

O skin-friction parameter in the y direction ;

w, exponent in the power-law variation of
viscosity.

Superscripts

"\ prime denotes differentiation with respect

to n.
Subscripts

e, w, denote conditions at the edge of the
boundary layer and on the surface 4 = 0,
respectively ;

~, free stream value,

INTRODUCTION

THE proBLEM of massive blowing (injection) into
compressible 3-dim. boundary layersis of considerable
interest in the analysis of thermal protection systems of
vehicles for the Jovian probe [1]. In actual situations,
3-dim. boundary-layer flows originate at a stagnation
point where the convective heating is maximum. It is
known that the heating rates can be reduced con-
siderably by injecting large amounts of fluid. For large
blowing rates, the structure of the boundary layer is
considerably different from that of moderate or no
blowing rate. In this case, the boundary layer consists
of a relatively thick inner layer having constant shear
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and temperature and a thin free-fixing type of outer
layer, which adjusts the former to match the external
inviscid flow. Since this corresponds to zero heat
transfer to the surface and greatly reduced surface
shear, the results may be considered as the boundary
layer having been blown off the surface. In such a
situation, the usual methods for treating two-point
boundary-value problems are either poorly conver-
gent or nonconvergent. This failure is due to the
diminution of shear and heat transfer near the wall and
to the increasing extent of the boundary layer normal
to the wall. In order to overcome this difficulty, several
methods both approximate and exact (numerical) have
been developed. These methods include the matched
asymptotic expansion method, the quasilinearization
method, the matrix method, the backward shooting
method, and the implicit finite-difference scheme in
combination with the quasilinearization technique.

Kubota and Fernandez [ 2], Kassoy [3]. Vimala and
Nath [4], and Libby [5] have used the method of
matched asymptotic expansion to study the effect of
massive blowing on the steady laminar compressible
2-dim., axisymmetric and 3-dim. stagnation point
boundary-layer flows with constant gas properties
(p « T, u « T). Libby [5] has also studied the effect
of moderate injection rates (f,, > — 3) on the steady 3-
dim. stagnation-point flows with constant gas proper-
ties. His analysis was subsequently extended by Nath
and Meena [ 6] to include variable gas properties. Both
have used the quasilinearization technique for the
solution of the governing equations.

Recently, two numerical methods for the solution of
boundary-layer equations have been developed by
Keller and Cebeci [7] and Wu and Libby [8]. Both
methods result in a block tridiagonal matrix. Sub-
sequently, Liu and Davy [9] have found that these
methods give accurate results only for low blowing
rates ( f,, > —4). Nachtsheim and Green [10] and Liu
and Nachtsheim [11] have used the backward
shooting method to study the effect of large blowing
rates on steady laminar compressible stagnation-point
boundary-layer flows. The backward shooting method
essentially reduces to solving a three-point boundary-
value problem starting from the dividing streamline.
Although this method is stable, its computing time is
long and increases as blowing rates increase. In order
to overcome the difficulties of the backward shooting
method, Liu and Chiu [ 12] have recently developed an
implicit finite-difference scheme in combination with a
quasilinearization technique to study the effect of large
blowing rates. This method is found to be fast as well
as stable and the rate of convergence (and therefore
computing time) is independent of blowing rates.
Thus, amongst all the methods, the foregoing method
seems to be most suited to boundary-layer problems
with massive blowing rates. Recently, this method was
applied to study the combined effect of large blowing
rates and magnetic field with variable gas properties on
an axisymmetric stagnation point [13].

Libby and Cresci [14] have shown experimentally
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that even for large rates of blowing the inviscid flow in
the stagnation region is not affected and, therefore, the
boundary layer concept can be applied to study the
effect of large blowing rates at the stagnation-point
flow field without introducing any appreciable error in
the analysis.

The aim of the present analysis is to study the effect
of massive blowing rates (—60 < f,. < 0) on steady
laminar  compressible  3-dim.  stagnation-point
boundary-layer flow with variable gas properties (p »
T~', i » T*) both for nodal and saddle points of
attachment. It may be remarked that the foregoing
problem for saddle-point flows (— 1 < ¢ < 0)has been
studied only for small blowing rates (f, > —1.25)
[15]. Even for nodal-point flows (0 < ¢ < 1), the results
are available only for moderate blowing rates (f, >
—3)[5, 6] Here, the equations governing the flow have
been solved numerically using the finite-difference
method in combination with the quasilinearization
technique [12] for nodal points of attachment (0 < ¢
< 1), but using the parametric differentiation tech-
nique [16-18] instead of the quasilinearization tech-
nique for saddle points of attachment (—1 < ¢ < 0).
The results for moderate or no blowing rates (-3 < f,,
< 0) have been compared with those of Libby [5}.
Nath and Meena [6], Wortman et al. [19], and Nath
and Muthanna [20] and for massive blowing rates
(—60 < f, < —3)with those of Krishnaswamy and
Nath [13].

The boundary layer analysis is not strictly applic-
able to the high-energy viscous-shock layer type of
flow field requiring massive blowing for controlling the
heat-load to the surface, because there is no asymptotic
approach to the velocity profile to some edge value due
to the occurrance of strong shock [i.e. u — u, (velocity
behind the shock) and not u — u, (velocity at the edge
of the boundary layer)]. However, there is a shear-
layer edge within the viscous-shock layer which for the
perfect gas case may be defined as H — H ,. In spite of
this shortcoming, the present analysis is expected to
exhibit most of the characteristics of the massive
blowing rates on the flow field and can form the basis
of an analysis based on a more realistic model.

GOVERNING EQUATIONS

The equations governing the steady laminar
compressible boundary-layer flow of a gas with
variable properties (ie. p » T ', g » T“) in the
neighbourhood of the stagnation-point of a 3-dim.
body taking into account the effect of blowing can be
expressed in dimensionless form as [5, 6, 15]

(NFY + (f+ co)f " +g—f7? =0, (1a)
(NQ"Y + (f + cp)p” + clg — ¢*) =0, (1b)
ProY(Ng') + (f+ colg' = 0. (lc)

The appropriate boundary conditions are
FO) =£fe <0 =0.f(2r)-1, (2a)
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0(0) =9 (0) =0, p'(x) > 1,
g(0) = g, g{x) > 1.

The parameter ¢ represents the nature of the 3-dim.
stagnation points. For nodal points of attachment, ¢ >
0(0 < ¢ < 1)and for saddle points of attachment, ¢ <
0(-1 < ¢ < 0)Also¢c =90and ! for 2-dim. and
axisymmetric stagnation-point flows, respectively. It
may be noted that w = 0.5 for high temperature flows,
w = 0.7 for low-temperature flows and @ = 1.0
represents the simplification of a constant density—
viscosity product [19]. We have taken the Prandtl
number Pr to be constant, since its variation in
boundary layer, for most atmospheric flight problems,
is quite small [19].

The skin-friction coefficients in the x and y direc-
tions are given by [6]

Cy = 2t /pul = 2(Re); " 27 o
Cr = 21,/pu? = 2ARe,) ' 2 (v ju)gy ' ol

(2b)
(2¢)

(3a)
(3b)

Similarly, the heat-transfer coefficient in terms of
Stanton number can be expressed as [6]

St = q,/[(he = hu)petc]

=(Re,) ' 2Pr i (l —g) g gy (3c)

RESULTS AND DISCUSSION

The set of equations (1) has been solved numerically
under conditions (2) using an implicit finite-difference
scheme in combination with the quasilinearization
technique. Since the method is described in full detail
by Liu and Chiu [12], its description is omitted here.
This method gives results for large rates of blowing
(—60 < £, < 0)for nodal points of attachment (0 < ¢
< 1}). However, for saddle points (—1 < ¢ < 0), this
method does not converge for large rates of blowing. In
order to overcome this difficulty, we have used the
method of parametric differentiation in combination
with the finite-difference scheme for saddle points (—1
< ¢ < 0). Using the results for ¢ = 0 (obtained by the
implicit finite-difference scheme in combination with
quasilinearization) as the starting values for the para-
meter ¢, we have obtained the solution of equations (1)
under conditions (2) for various values of ¢ in the
range —1 < ¢ < 0 by the method of parametric
differentiation. The resulting equations (which are
linear) have been solved numerically using an implicit
finite-difference scheme. Since the method of para-
metric differentiation is also described in great detail
elsewhere [16- 18], it is not presented here.

Computations have been carried out for various
values of the parameters. Variable step size has been
used in the y direction starting with a large step size
and reducing it uniformly as it moves towards the
dividing streamline. For moderate blowing rates ( f,, >
—3), the starting step size i, = 0.2 and the last step size
hy = 005 have been used and further reduction in
these step sizes does not alter the results up to four
decimal places. For large blowing rates (f, < — 3), the
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starting step size &1, = 0.8 and the last step size h, =
0.1 have been used and further reduction in them has
no effect on the results up to the fifth decimal place. For
parametric differentiation with respect to the para-
meter c, a constant step size Ac = — 0.05 has been used
and further reduction in the step size has no effect on
the results up to the fifth decimal place. Moreover, the
value of 5, (edge of the boundary layer) is chosen
depending upon the rate of blowing. n, increases as
the blowing rate increases. For example when £, =
—30, we have takenn, = 70and whenf, = — 60,75,
= 100 has been used. Further change in #, does not
affect the results up to the fifth decimal place.

In order to test the accuracy of the method, we have
compared our results for moderate rates of blowing
(=3 < f, < 0) with those obtained by the quasi-
linearization technique [5, 6], the operator technique
[19] and by parametric differentiation [20] and they
are found to be in excellent agreement. However, for
the sake of brevity, comparison only with those of
Libby [5] and Nath and Meena [6] has been given in
Tables 1 and 2. In Fig. 1, we have also compared the
velocity profiles (f, ¢’} for ¢ = 025 and f, = —3
{moderate blowing rate) with those obtained by the
method of matched asymptotic expansion [5] and we
find significant difference in the results in a certain
range of n (the maximum difference (in ¢')is about 30%
at n ~ 12.4). However, this difference can be reduced
by taking more terms in the matched asymptotic
expansion. Also, the velocity and enthalpy profiles
{1, @', g) for massive blowing rates (—60 < f, < —3)
for ¢ = 1 have been compared with those of Krishnas-
wamy and Nath [13] and they are found to be in
excellent agreement (Fig. 2).

The effect of massive blowing (f, < —10) on the
velocity and enthalpy profiles (7, ¢', g} for nodal-point
flows (0 < ¢ < 1)has been shown in Figs. 2 and 3 and
for saddle-point flows (— 1 < ¢ < 0)in Figs. 4-6. For
saddle-point flows, the velocity profiles in the x
direction (f’) show overshoot whereas the velocity
profiles in the y direction (¢’) show reverse flow and
overshoot (Figs. 4 and 5). This behaviour is due to the
combined effects of inertia, pressure and shear stress.
The magnitude of the overshoot in f* and ¢’ as well as
the region of reverse flow in ¢’ increase as the blowing
rate f, increases. On the other hand, for nodal-point
flows {0 < ¢ < 1), there is neither reverse flow nor
velocity overshoot in either of the profiles (Figs. 2 and
3). For zero or moderate blowing rates { f, > — 3}, the
velocity profiles in the y direction (¢') exhibit reverse
flow but no overshoot in the saddle-point region (— 1
< ¢ < 0). Similar behaviour has been observed by
Libby [15]. Here, the profiles for f, > —3 are not
shown for the sake of brevity*. It is observed that for
both nodal and saddle point flows (— 1 < ¢ < 1), there
is a rapid increase in the thickness of the boundary
layer but a rapid decrease in wall shear and heat

* They may be obtained from the authors.
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Table 1. A comparison of skin-friction and heat-transfer parametersfor g, = 0.1, w = 1 and

Pr = 07
¢=1 ¢c=0
~Ju e P Gull ~ gy} '& o gu/ll ~ gy
0 0.8460 0.8460 0.6128 0.6761 0.5058 04310
{0.8481)* {0.8481) 0.6122) (0.6750) {0.5050) (04230
1 0.2764 0.2764 0.1840 0.1648 0.0420 0.0671
(0.2767) (0.2767) (0.1844) (0.1650) {0.0420) (0.0670)
2 0.0531 0.0531 0.0043 0.0499 0.0001 0.0
(0.0531) (0.0531) 0.0043) {0.050) 0.0 (0.0
3 0.0333 0.0333 0.0 0.0333 0.0 0.0
{0.0333) {0.0333) 0.0)

*The values in the parentheses are the values obtained by Libby [5].

Table 2. A comparison of skin-friction and heat-transfer parameters for ¢ = 0.5 and Pr = 0.7

g =02 g = 0.6
S @ Ie @ gu/1—9,) I M g/l =g,
0.5 0.2208 0.1634 0.1027 0.5042 0.3413 0.1619
| (0.2200)* {0.1635) 0.1025) (0.5028) 0.3414) {0.1618)
1.0 0.2889 0.2060 0.1329 0.5478 0.3662 0.1727
{0.2888) {0.2061) (0.1330) (0.5468) {0.3663) (0.1730)
0.5 0.1044 0.0591 0.0161 0.2928 0.1600 0.0250
2 0.1043) (0.0590) (0.0160) (0.2930) (0.1601) (0.0250)
1.0 0.1008 0.0517 0.0029 0.2967 0.1578 0.0169
(0.1008) (0.0517) (0.0029) (0.2965) (0.1581) (0.0173)
0.5 0.0664 0.0338 0.0008 0.1985 0.1010 0.0012
3 (0.0665) (0.0336) (0.0008) (0.1987) (0.1011) 0.0012)
10 0.0666 0.0334 0.0 0.1988 0.1005 0.0003
{0.0665) (0.0334) (0.0} {0.1989} (0.1005) (0.0003)
*The values in the parentheses are the values obtained by Nath and Meena [6].
1.0
Pr=07,g,=0.1,0=0.25,fy =-3 7/ ;
Present method ////
0.8~ ] Quasilinearisation method //
————— Asymptotic solution (first order terms) i
. . ) Libby /
——- — Asymptotic solution {first and second iy
order terms) /
16

Fi. 1.

Comparison of velocity profiles for moderate blowing {¢ = 0.25).
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Fic. 2. Comparison of velocity and enthalpy profiles for large blowing {¢ = 1.0}.

transfer with increasing blowing rates. Also thereisan
enthalpy overshoot in the saddle-point region for
massive blowing rates {Fig. 6). The overshoot in the
enthalpy profiles is due to the massive blowing which
results in a very slight decrease of temperature below
the wall temperature in the saddle-point region and
hence the heat-transfer parameter g, = 0~. However,
the zero heat-transfer condition (g, = 0) corresponds
to unit Prandtl number (Pr = 1) but here we have
taken Pr = 0.7. Because of this difference of Prandtl
number and a slight decrease of temperature below the

wall condition, the enthalpy for the boundary-layer
flow exceeds that in the outer inviscid flow for some
range. This is analogous to the enthalpy overshoot
observed by Yasuhara [21] for g, = 1 and Pr # 1.
There is no such phenomenon in the nodal-point
region for massive blowing as there is no decrease of
enthalpy below the specified value at the wall and
hence the heat-transfer parameter g, = 0" in the

nodal-point region.
The variations of the skin-friction and heat-transfer

parameters (fo, oL, gu) with ¢ (=1 < ¢ < 1) for

1.0

0.8

Iy

f, 950
o
o

0.4

0.2

|
100

Fi. 3. Effect of large blowing on velocity and enthalpy profiles (¢ = 0.5).
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FiG. 4. Effect of large blowing on velocity profiles (¢ = —0.5).

moderate and large blowing rates are shown in Figs. 7
and 8, respectively. For moderate blowing rates {Fig.
7, fw and g, decrease as ¢ decreases until at some
negative ¢, ¢, is reversed and f}, and g, begin to
increase as c¢ decreases. This trend has also been
observed by Libby [15], Wortman et al. [19], and
Nath and Muthanna [20]. Figure 7 also shows the
effect of the variation of the density-viscosity product
across the boundary layer characterized by the para-

meter won f, o, and g,,. The effect of w becomes less
pronounced as blowing rate increases and for large
blowing, the effect is almost negligible (Fig. 8). Also for
large blowing, f4 and ¢, (g, ~ 0) become almost
insensitive to the change in ¢, however, ¢!, decreases as
¢ decreases.

The effect of ¢ on dividing streamline velocities
(f,)f+c¢=09 (9)r+cp=0» and enthalpy (Q)f+w:0 is
shownin Fig. 9. They are found to be almost insensitive

15+
Pr=07 c=~1, g,=08,w=1
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Fi:. 8. Effect of « on skin-friction and heat transfer parameters (—~60 < f, < —1.0).

to the change in ¢ in the nodal-point region (0 < ¢ <
1). However, in the saddle-point region (~1 < ¢ <0},
the effect of ¢ is more pronounced, especially on
(@)r+co=0- As the blowing rate increases, (f);+c,-0r
{0} +cp=0- a0d {g)s. ., -0 also increase for a certain
range of ¢, but they decrease beyond this range.

The variation of the location of the dividing stream-
line (17); ., o for theentire range of ¢ (— 1 < ¢ < 1)is
shown in Fig. 10. It increases up to a certain maximum
level for some value of ¢ and then decreases. It is noted
that the increase in the blowing rate shifts the dividing
streamline away from the boundary.

The effect of wall temperature g,, on the dividing
streamline velocity and enthalpy profiles for large
blowing rate is shown in Fig. 11. For nodal-point flows
(¢ = 0.5), the dividing streamline velocity in the x
direction and enthalpy profiles increase as g, in-
creases. For saddle-point flows (¢ = —0.5), they
decrease as g, increases until g, = g¥ and then
increase with g,. The dividing streamline velocity in
the y direction (¢');..,-o increases when the wall
temperature g,, is increased slightly fromg,, = 0.1. But,
for further increase in g, it decreases rapidly up to a
certain value and then increases slowly as g,, tendsto 1.

1.0

0.8

o 0.4
A
-
o
+
~ 0
o™
e
-
~0.4
Pr=07,9,~06,w=10
f’
YN Jg 0 ¥t chr=o
ST~
NS -0 S —_— g
~ I N /
~oz2e/
-1.2 1 | ]
-1.0 -05 0 05 10
c

F1i. 9. Effect of the body configuration ¢ on the velocity and enthalpy at the dividing streamline.
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F16. 10. Variation of the location of the dividing streamline with body configuration c.

The effect of g,, on the location of dividing stream-
line (1) +.,—o is shown in Fig. 12. It increases as g,
increases. Further, an increase in blowing rate shifts
the location of dividing streamline away from the wall
for all wall temperature conditions.

CONCLUSIONS

The effect of massive blowing is to move the dividing
streamline away from the surface. The effect of the
variation of the density- viscosity product across the
boundary layer (i.e. variable gas properties)is found to
be negligible for large blowing rates. However, they are

found to be significant for moderate blowing rates. The
velocity and enthalpy profiles in the saddle-point
region (—1 < ¢ < 0) for large blowing rates show
some interesting features not encountered in nodal-
point region (0 < ¢ < 1). In this region, the velocity
profiles in the x direction have velocity overshoot and
the velocity profiles in the y direction have both reverse
flow and velocity overshoot and they increase as the
blowing rates increase. There is also an enthalpy
overshoot which increases as the blowing rate in-
creases. For massive blowing case, we find that the
boundary layer consists of a relatively thick inner layer

1.0
0.5+

o

’1

-

v ———

+ - \

! - \05
’;' (o] N \ Pr= 0.7) fw=-10,w =1
RN \ ,
¥ \ .

\ ———— $'L(f+c$)=0
\\ —_———
N\
-085F \
N\
\
AN
\\
N _
S e
-1.0 1 1 L -
0 0.2 0.4 0.6 08 10
9w

FiG. 11. Effect of wall temperature on the velocity and enthalpy at the dividing streamline.
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Fic. 12, Variation of the location of the dividing streamline with wall temperature.

with zero heat transfer and negligible skin friction and
a relatively thin outer layer adjusting the inner and
external flows. Here the results of ref. {12] have been
extended to the case of saddle points of attachment by
using parametric differentiation in place of quasi-
linearization employed in ref. [12]. The present method
enables us to obtain the solution exactly for massive
blowing rates for both saddle and nodal point regions
which could not be obtained by previous investigators.
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ECOULEMENT DE COUCHE LIMITE COMPRESSIBLE AU POINT D’ARRET
TRIDIMENSIONNEL ET AVEC SOUFFLAGE

Résumé—On étudie I'effet d’un soufflage important sur 'écoulement de couche limite compressible, avec des
propriétés variables du gaz, au point d'arrét tridimensionnel. Les équations du mouvement sont résolues
numeériquement en utilisant un schéma implicite aux différences finies en combinaison avec la technique de
quasi-linéarisation pour les points nodaux d'attache, mais en employant une technique de différenciation
paramétrique a la place de la quasi-lingarisation pour les points relatifs 4 une selle. On montre que Peffet des
grands débits de soufflage est de déplacer la couche limite en Pécartant de la surface. L'effet de la variation du
produit masse volumique-viscosité 4 travers la couche limite est trouve négligeable pour les grands debits de
soufflage, mais il est sensible pour les débits modérés. Les profils de vitesse dans Ia direction transversale pour
tes points relatifs & une selle en présence de grands débits de souffiage montrent 4 Ia fois un écoulement de
refour et une survitesse.

DIE KOMPRESSIBLE GRENZSCHICHTSTROMUNG AM DREIDIMENSIONALEN
STAUPUNKT BEI STARKEM AUSBLASEN

Zusammenfassung—Der Einfluf} starken Ausblasens auf die stationdre laminare kompressible Grenzschicht
mit verinderlichen Stoffwerten des Gases am dreidimensionalen Staupunkt (unter EinschluB sowohl
konvexer wie konkaver Anlagepunkie) wurde untersucht. Die Stromungsgleichungen wurden numerisch
mittels eines implizierten Differenzen-Verfahrens gelost—fiir konvexe Anlagepunkte in Verbindung mit dem
Quasilinearisierungsverfahren und fiir konkave Anlagepunkte unter ersatzweiser Verwendung parametri-
scher Differentiation. Als Auswirkung starken Ausblasens ergibt sich ein Abdriingen der zdhen Unterschicht
von der Oberfliche. Der Einfiufd der Anderung des Dichte-Viskositits-Produkts quer zur Grenzschicht wird
fiir starkes Ausblasen vernachidssigbar, ist aber bedeutend fiir méBiges Ausblasen. Die Geschwindigkeitspro-
file in Querrichtung fir konkave Anlagepunkte zeigen bei starkem Ausblasen sowoh! Stromungsumkehr als
auch Geschwindigkeits-Erhdhung.

TEUEHHE CKHMAEMOTO NOTPAHMYHOIO CJIOA B TPEXMEPHOH
KPUTHYECKOW TOYKE NPM UHTEHCHUBHOM BIVBE

Antotamma—Mccne108aH0 BANSHHEE CKOPOCTH MHTCHCHBHOTO BJIyBA HA YCTAHOBMBILEECS JNAMHHAPHOS
TEYEHHE CKAMAEMOTO ra3d ¢ NEPEMEHHBLIMH CBOJCTBAMH B TPEXMEPHOH KPHUTHYECKOH TOUKe (BKIIOYAS
PACCMOTpEHHE KaK Y3/10BHIX, TAK W CEANOBBIX TOYEK NMPHCOCAMHEHMA NOTOKA). YPaBHCHHA [BHXEHMH
PeLLIEHE] YHCIIEHHO ¢ HCNOMLIOBAHUEM HESBHON KOHEYHO-pasHOCTHOH cxeMbl, McnonbioBanuck Takxke
METO/ KBA3HIMHEAPHMIALMM JUIS Y3JIOBBIX TOMEK MPHCOSOMHCHHS M METOX napamerpudeckoil mudipe-
peHUMALME (BMECTO KBA3HIMHEADMIAUMH) ITA CEMUIOBBIX TOHEK NPHCOGIMHCHHA Moroka. Hadneo,
4TO MPH WHTEHCHBHOM BIlyse Bsakuif cnodl oTTecHSeTCs OT NOBEPXHOCTH, & MIMEHEHHE TIPOH3BEACHUN
RBIOTHOCTH Ha BA3KOCTb NONEPEK NOFPAHNYHOTO CIIOS NPAKTHYCCKH HE BAMACT B PEXHME HHTCHCHBHOTO
BOYR2, HO HMEET CYIECTBEHHOS IHAYCHHE NIPH YMEDEHHBIX CKOPOCTAX Baysa. [lo npogunsm cxopocTH
A% CEAROBHIX TOYEK NPHCOCAHHSHHWA NOTOKE HPH HHTCHCHBHOM BAYBE YCTAHOBACHA BOIMOKHOCTH
BO3BDATHOTO TCHYSHUS ¥ DE3KOTC CKAYKE CKOPOCTH.
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