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Abstract-The effect of massive blowing rates on the steady laminar compressible boundary-layer flow with 
variable gas properties at a 3-dim. stagnation point (which includes both nodal and saddle points of 
attachment) has been studied. The equations governing the flow have been solved numerically using an 
implicit finite-difference scheme in combination with the quasilinearization technique for nodal points of 
attachment but employing a parametric differentiation technique instead of quasilinearization for saddle 
points ofattachment. It is found that the effect of massive blowing rates is to move the viscous layer away from 
the surface. The effect of the variation of the density- viscosity product across the boundary layer is found to 
be negligible for massive blowing rates but significant for moderate blowing rates. The velocity profiles in the 
transverse direction for saddle points of attachment in the presence of massive blowing show both the reverse 

flow as well as velocity overshoot. 

NOMENCLATURE 

velocity gradients in the s and ~j direc- 
tions, respectively ; 
ratio of velocity gradients, b/a ; 
skin-friction coefficients in the Y and J’ 

directions, respectively ; 
dimensionless stream function such that 
f” = u/u,; 
mass transfer parameter, 

- (~MVAAW) 2 ; 
skin-friction parameter in the x direction ; 
dimensionless enthalpy, h/h,; 
dimensionless enthalpy at the wall (wall 

temperature), &,/II,; 
enthalpy ; 
total enthalpy ; 
ratio of the density-viscosity product 

across the boundary layer, ~~~~~~~~ = 

9 
r,-i. 

Pranitl number; 
local heat-transfer rate at the wall; 
local Reynolds number, au2/v, ; 
Stanton number (heat-transfer 

parameter) ; 
temperature ; 
velocity components in the .u,y,z direc- 
tions, respectively ; 
principal, transverse and normal direc- 
tions, respectively. 

Greek symbols 

‘I? similarity variable, 

(~~i4’ ‘S’o (P/P,) dz; 

* To whom correspondence should be addressed. 

coefficient of viscosity ; 
kinematic viscosity at the edge of the 

boundary layer ; 
density; 

shear stresses at the wall in the x and J 
directions, respectively; 
dimensionless stream function such that 
cpl = O/l?, ; 

skin-friction parameter in they direction ; 
exponent in the power-law variation of 
viscosity. 

Superscripts 
prime denotes differentiation with respect 
to q. 

Subscripts 

e, w, denote conditions at the edge of the 
boundary layer and on the surface 7 = 0, 
respectively ; 

% , free stream value. 

INTRODUCTION 

THI: PROBLEM of massive blowing (injection) into 
compressible 3-dim. boundary layers is ofconsiderable 
interest in the analysis ofthermal protection systems of 
vehicles for the Jovian probe [l]. In actual situations, 
3-dim. boundary-layer flows originate at a stagnation 
point where the convective heating is maximum. It is 
known that the heating rates can be reduced con- 
siderably by injecting large amounts of fluid. For large 
blowing rates, the structure of the boundary layer is 
considerably different from that of moderate or no 
blowing rate. In this case, the boundary layer consists 
of a relatively thick inner layer having constant shear 
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and temperature and a thin free-fixing type of outer 
layer, which adjusts the former to match the external 
inviscid Row. Since this corresponds to zero heat 
transfer to the surface and greatly reduced surface 
shear, the results may be considered as the boundary 
layer having been blown off the surface. In such a 
situation. the usual methods for treating two-point 
boundary-value problems are either poorly conver- 
gent or nonconvergent. This failure is due to the 

diminution ofshear and heat transfer near the wall and 
to the increasing extent of the boundary layer normal 
to the wall. In order to overcome this difficulty, several 
methods both approximate and exact (numerical) have 
been developed. These methods include the matched 
asymptotic expansion method. the quasilinearization 
method. the matrix method, the backward shooting 

method, and the implicit finite-difference scheme in 
combination with the quasilinearization technique. 

Kubota and Fernander [2], Kassoy [3]. Vimala and 
Nath [4]. and Libby [S] have used the method of 
matched asymptotic expansion to study the effect of 
massive blowing on the steady laminar compressible 
2-dim., axisymmetric and 3-dim. stagnation point 
boundary-layer flows with constant gas properties 

(p 7~ T- ‘, k~ -/_ T). Libby [5] has also studied the effect 
of moderate injection rates cf, 2 - 3) on the steady 3- 
dim. stagnation-point flows with constant gas proper- 
ties. His analysis was subsequently extended by Nath 
and Meena [6] to include variable gas properties. Both 
have used the quasilinearization technique for the 

solution of the governing equations. 
Recently, two numerical methods for the solution of 

boundary-layer equations have been developed by 
Keller and Cebeci [7] and Wu and Libby [S]. Both 
methods result in a block tridiagonal matrix. Sub- 

sequently, Liu and Davy [9] have found that these 
methods give accurate results only for low blowing 
rates (f, > - 4). Nachtsheim and Green [lo] and Liu 
and Nachtsheim [l I] have used the backward 
shooting method to study the effect of large blowing 
rates on steady laminar compressible stagnation-point 
boundary-layer flows. The backward shooting method 
essentially reduces to solving a three-point boundary- 
value problem starting from the dividing streamline. 

Although this method is stable, its computing time is 
long and increases as blowing rates increase. In order 
to overcome the difficulties of the backward shooting 
method, Liu and Chiu [ 121 have recently developed an 
implicit finite-difference scheme in combination with a 
quasilinearization technique to study the effect of large 
blowing rates. This method is found to be fast as well 
as stable and the rate of convergence (and therefore 
computing time) is independent of blowing rates. 
Thus. amongst all the methods, the foregoing method 
seems to be most suited to boundary-layer problems 
with massive blowing rates. Recently, this method was 
applied to study the combined effect of large blowing 
rates and magnetic field with variable gas properties on 
an axisymmetric stagnation point [13]. 

Libby and Cresci [14] have shown experimentally 

that even for large rates of blowing the inviscid flow in 
the stagnation region is not affected and, therefore, the 
boundary layer concept can be applied to study the 
effect of large blowing rates at the stagnation-point 
flow field without introducing any appreciable error in 
the analysis. 

The aim of the present analysis is to study the effect 
of massive blowing rates (- 60 5 f; < 0) on steady 

laminar compressible 3-dim. stagnation-point 

boundary-layer flow with variable gas properties (~1 Y 
T-t, in 7 T”) both for nodal and saddle points of 
attachment. It may be remarked that the foregoing 
problem for saddle-point flows ( - 1 I c c 0) has been 

studied only for small blowing rates (f, 2 - 1.25) 

[ 151. Even for nodal-point flows (0 5 c I 1 ), the results 
are available only for moderate blowing rates (fw 2 
- 3) [5, 61. Here, the equations governing the flow have 
been solved numerically using the finite-difference 
method in combination with the quasilinearization 
technique [12] for nodal points of attachment (0 2 c 
5 1). but using the parametric differentiation tech- 

nique [ 16- IX] instead of the quasilinearization tech- 
nique for saddle points of attachment (- 1 < c < 0). 

The results for moderate or no blowing rates (- 3 s.1, 
I 0) have been compared with those of Libby [5]. 
Nath and Meena [6], Wortman et al. [19], and Nath 
and Muthanna [20] and for massive blowing rates 
( - 60 5.1, < - 3) with those of Krishnaswamy and 
Nath [13]. 

The boundary layer analysis is not strictly applic- 
able to the high-energy viscous-shock layer type of 

flow field requiring massive blowing for controlling the 
heat-load to the surface, because there is no asymptotic 

approach to the velocity profile to some edge value due 

to the occurrance of strong shock [i.e. u + U, (velocity 
behind the shock) and not n + u, (velocity at the edge 
of the boundary layer)]. However, there is a shear- 

layer edge within the viscous-shock layer which for the 
perfect gas case may be defined as H + H , In spite of 
this shortcoming, the present analysis is expected to 
exhibit most of the characteristics of the massive 
blowing rates on the flow field and can form the basis 
of an analysis based on a more realistic model. 

GOVERNING EQUATIONS 

The equations governing the steady laminar 
compressible boundary-layer flow of a gas with 
variable properties (i.e. p % T-‘, p I T”) in the 
neighbourhood of the stagnation-point of a 3-dim. 
body taking into account the effect of blowing can be 
expressed in dimensionless form as [S, 6, 151 

(Nf“‘)’ + (.f+ ccp)f‘“+ y -f” = 0. (la) 

(Yp") + ("f-t c(p)@ + c(g - qf2) = 0, (lb) 

Pr-'(NC/)' + (,f'+ ccp)g' = 0. (lc) 

The appropriate boundary conditions are 

J(O)=.f,(.f, < OJ,f“(O) = 0, f'(x) ---t 1. (2a) 
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p(O) = q’(O) = 0, q’( %) --* 1, (2b) 

do)=&,g(-~)+1. (2c) 

The parameter c represents the nature of the 3-dim. 
stagnation points. For nodal points ofattachment, c 2 
0 (0 < c I 1) and for saddle points of attachment, c < 
0(-l 1~<O).Alsoc=Oand1for2-dim.and 
axisymmetric stagnation-point flows, respectively. It 
may be noted that w = 0.5 for high temperature flows, 
o = 0.7 for low-temperature flows and w = 1.0 
represents the simplification of a constant density- 
viscosity product 1191. We have taken the Prandtl 
number Pr to be constant, since its variation in 
boundary layer. for most atmospheric flight problems, 
is quite small [19]. 

The skin-friction coefficients in the Y and )‘ direc- 
tions are given by [6] 

CI = 2t,/p,u,2 = 2(Re); ’ ‘g;- ‘,f;, (3a) 

Cr = 2sr/& = Z(Re,)- 1 ’ (uJue)g;- 1 cp;. (3b) 

Similarly, the heat-transfer coefficient in terms of 
Stanton number can be expressed as [6] 

St = q,![@, - UPe4.1 

=(Rex)-‘2Pr-l(i -gJ’g:-‘g:. (3c) 

RESULTS AND DISCUSSION 

The set of equations (1) has been solved numerically 
under conditions (2) using an implicit finite-difference 
scheme in combination with the quasilinearization 
technique. Since the method is described in full detail 
by Liu and Chiu [12], its description is omitted here. 
This method gives results for large rates of blowing 
(- 60 I Jw < 0) for nodal points of attachment (0 < c 
5 1). However, for saddle points (- 1 2 L’ < 0), this 
method does not converge for large rates of blowing. In 
order to overcome this difficulty, we have used the 
method of parametric differentiation in combination 
with the finite-difference scheme for saddle points (- 1 
--; c < 0). Using the results for c = 0 (obtained by the 
implicit finite-difference scheme in combination with 
quasilinearization) as the starting values for the para- 
meter c, we have obtained the solution ofequations (1) 
under conditions (2) for various values of c in the 
range -1 5 c < 0 by the method of parametric 
differentiation. The resulting equations (which are 
linear) have been solved numerically using an implicit 
finite-difference scheme. Since the method of para- 
metric differentiation is also described in great detail 
elsewhere [16 181, it is not presented here. 

Computations have been carried out for various 
values of the parameters. Variable step size has been 
used in the rl direction starting with a large step size 
and reducing it uniformly as it moves towards the 
dividing streamline. For moderate blowing rates (,f, 2 
- 3), the starting step size 11, = 0.2 and the last step size 
11,~ = 0.05 have been used and further reduction in 
these step sizes does not alter the results up to four 
decimai places. For large b~owingrates (f, < - 3), the 

starting step size h, = 0.8 and the last step size h,Y = 
0.1 have been used and further reduction in them has 
no effect on the results up to the fifth decimal place. For 
parametric differentiation with respect to the para- 
meter c, a constant step size AC = - 0.05 has been used 
and further reduction in the step size has no effect on 
the results up to the fifth decimal place. Moreover, the 
value of 11X (edge of the boundary layer) is chosen 
depending upon the rate of blowing. if, increases as 
the blowing rate increases. For example when .f;, = 
- 30, we have taken 4 , = 70and when_fw = -60,~~ 
= 100 has been used. Further change in pl , does not 
affect the results up to the fifth decimal place. 

In order to test the accuracy of the method, we have 
compared our results for moderate rates of blowing 
(- 3 < f, < 0) with those obtained by the quasi- 
linearization technique [5, 61, the operator technique 
1191 and by parametric differentiation 1201 and they 
are found to be in excellent agreement. However, for 
the sake of brevity, comparison only with those of 
Libby [IS] and Nath and Meena [6] has been given in 
Tables I and 2. In Fig. 1, we have also compared the 
velocity profiles (f ', cp') for c = 0.25 and & = - 3 
(moderate biowing rate) with those obtained by the 
method of matched asymptotic expansion [5] and we 
find significant difference in the results in a certain 
range of q (the maximum difference (in cp’) is about 30% 
at ~1 2 12.4). However, this difference can be reduced 
by taking more terms in the matched asymptotic 
expansion. Also, the velocity and enthalpy profiles 
cf, q’, g) for massive blowing rates (- 60 if, < - 3) 
for c = 1 have been compared with those of Krishnas- 
wamy and Nath [13] and they are found to be in 
excellent agreement (Fig. 2). 

The effect of massive blowing (,jL 5 - 10) on the 
velocity and enthalpy profiles (.j”, cp’, g) for nodal-point 
flows (0 < c _< I) has been shown in Figs. 2 and 3 and 
for saddle-point flows (- 1 < c < 0) in Figs. 4-6. For 
saddle-point flows, the velocity profiles in the s 
direction (f’) show overshoot whereas the velocity 
profiles in the _Y direction (cp’) show reverse flow and 
overshoot (Figs. 4 and 5). This behaviour is due to the 
combined effects of inertia, pressure and shear stress. 
The magnitude of the overshoot inj” and f~’ as well as 
the region of reverse flow in 9’ increase as the blowing 
rate,\;, increases. On the other hand, for nodaI-poiiit 
flows (0 I c 2 I), there is neither reverse flow nor 
velocity overshoot in either of the profiles (Figs. 2 and 

3). For zero or moderate blowing rates (,ji L - 31, the 
velocity profiles in the 1’ direction (cp’) exhibit reverse 
flow but no overshoot in the saddle-point region (- 1 
2 c < 0). Similar behaviour has been observed by 
Libby [ 151. Here, the profiles for ji 2 - 3 are not 
shown for the sake of brevity*. It is observed that for 
both nodal and saddle point flows ( - 1 I c 5 I ), there 
is a rapid increase in the thickness of the boundary 
layer but a rapid decrease in wall shear and heat 

* They may be obtained from the authors. 
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Table 1. A comparison of skin-friction and heat-transfer parameters for 8, = 0.1, w = 1 and 
Pr = 0.7 

c=l L’ = 0 

-J;. f, ” VW g,l(l -Y,) fc, cpw &l(l - Yw) 

0 0.8460 
(0x481)* 

1 0.2764 
(0.2767) 

2 0.0531 
(0.0531) 

3 0.0333 
(0.0333) 

0.8460 
(0.8481) 

0.2764 
(0.2767) 

0.0531 
(0.0531) 

0.0333 
(0.0333) 

0.6128 0.6761 0.5058 0.4310 
(0.6122) (0.6750) (0.5050) (0.4230) 

0.1840 0.1648 0.0420 0.0671 
(0.1844) (0.1650) (0.0420) (0.0670) 

0.0043 0.0499 tl.0001 0.0 
(0.0043) (0.050) (0.0) (0.0) 

0.0 0.0333 0.0 0.0 

(0.0) 

*The values in the parentheses are the values obtained by Libby [S]. 

Table 2. A comparison of skin-friction and heat-transfer parameters for c = 0.5 and Pr = 0.7 

-- yw = 0.2 y, = 0.6 

-.1;, CfJ .K 
I, 

cp* &/(l - 9,) 1‘: 
I/ 

cpw Y,l(l - 9,) 
-.-- 1-.. .- 

0.5 0.2208 0.1634 0.1027 0.5042 0.3413 0.1619 

1 (0.2209)* (0.1635) (0.1025) (0.502X) (0.3414) (0.1618) 

1.0 0.2889 0.2060 0.1329 0.5478 0.3662 0.1727 
(0.2888) (0.2061) (0.1330) (0.5468) (0.3663) (0.1730) 

0.5 0.1044 0.0591 0.0161 0.2928 0.1600 0.0250 

2 0.1043) (0.0590) (0.0160) (0.2930) (0.1601) (0.0250) 

1.0 0.1008 0.0517 0.0029 0.2967 0.1578 0.0169 
(0.1008) (0.0517) (0.0029) (0.2965) (0.1581) (0.0173) 

0.5 0.0664 0.0338 O.txlO8 0.1985 0.1010 0.0012 

3 (0.0665) (0.0336) (0~~0~) (0.1987) (0.1011) (0.~12) 

1.0 0.0666 0.0334 0.0 0.1988 0.1005 0.0003 
(0.0665) (0.0334) (0.0) (0.1989) (0.1005) (0.0003) 

-- ___~~~ -.__ --._ 

*The values in the parentheses are the values obtained by Nath and Meena [6]. 

- Present method 

Quasilinearisation method 

Asymptotic solution (first and second 
order terms) 

0 4 12 1 

FIG. 1. Comparison of velocity profiles for moderate blowing (c = 0.25). 
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-7 -60 

%k----- 

FIG. 2. Comparison of velocity and enthaipy profiles for large blowing (c = 1.0). 

transfer with increasing blowing rates. Also there is an 
enthalpy overshoot in the saddle-point region for 
massive blowing rates (Fig. 6). The overshoot in the 
enthalpy profiles is due to the massive blowing which 
results in a very slight decrease of temperature below 
the wall temperature in the saddle-point region and 
hence the heat-transfer parameter gk = O-. However, 
the zero heat-transfer condition (gL = 0) corresponds 
to unit Prandtl number (Pr = 1) but here we have 
taken Pr = 0.7. Because of this difference of Prandtl 
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wall condition, the enthalpy for the boundary-layer 
flow exceeds that in the outer inviscid flow for some 
range. This is analogous to the enthalpy overshoot 
observed by Yasuhara [21] for gW = 1 and Pr # 1. 
There is no such phenomenon in the nodal-point 
region for massive blowing as there is no decrease of 
enthalpy below the specified value at the wall and 
hence the heat-transfer parameter g: = 0’ in the 
nodal-point region. 

The variations of the skin-friction and heat-transfer 
number and a slight decrease of temperature below the parameters (ft~, q~:, g&) with c (- 1 I c 5 1) for 

PfkO.7,c =o.5,w=1,gw=o.2 

Fit;. 3. Effect of large blowing on velocity and enthalpy profiles (c = OS). 
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FIG. 4. Efkct of large blowing on velocity profiles (f = -0.5). 

moderate and large blowing rates are shown in Figs. 7 
and 8, respectiveiy. For moderate blowing rates (Fig. 
7},fG and gk. decrease as c decreases until at some 
negative c, cp: is reversed and SG and g: begin to 
increase as c decreases. This trend has also been 
observed by Libby [15], Wortman et al. [19], and 
Nath and Muthanna [20]. Figure 7 also shows the 
effect of the variation of the density-viscosity product 
across the boundary Iayer characterized by the para- 

meter w on f I, &, and &. The effect of w becomes less 
pronounced as blowing rate increases and for large 
blowing, the effect is almost negligible (Fig. 8). Also for 
large blowing, SG and gk (gk = 0) become almost 
insensitive to the change in c, however, & decreases as 
c decreases. 

The effect of c on dividing streamline velocities 
(f)fiCln=~l (~‘)/+~~=e~ and enthafpy (g&+,,=, is 
shown in Fig. 9. They are found to be almost insensitive 

FK;. 5. Erect of iarge blowing on velocity protiies (C = - 1.0). 
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FIG. 6. Effect of large blowing on enthalpy profiles (c = -0.5, -1.0). 

Pr=O.7,g,=O.6 

- wz1.0 

----- w=o.5 

FIG. 7. Effect of w on skin-friction and heat-transfer parameters {SW = 0, - 1.0). 
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-0.03 

-0.06 

Pt-zo.7, g,=O8 

- W=l.O 

. w =0.5 

FK;. 8. EA‘ect of w on skin-friction and heat transfer parameters (-60 2 f, < - 1.0). 

to the change in c in the nodal-point region (0 I c < 
1). However, in the saddle-point region ( - 1 I c 5 O), 
the efIect of c is more pronounced, especially on 
(g)f+c,=o. As the blowing rate increases, (~)f+,,=o, 
(v)‘)~+~~=~, and (g)f+c,,D=o also increase for a certain 
range of C, but they decrease beyond this range. 

The variation of the location of the dividing stream- 

line (~)~+~~=a for the entire range of c (- 1 5 c 5 1) is 
shown in Fig. 10. It increases up to a certain maximum 
level for some value of c and then decreases. It is noted 
that the increase in the blowing rate shifts the dividing 
streamline away from the boundary. 

The effect of wall temperature g, on the dividing 
streamline velocity and enthalpy profiles for large 
blowing rate is shown in Fig. 1 I. For nodal-point flows 
(c = 0.5), the dividing streamline velocity in the .Y 
direction and enthalpy profiles increase as g, in- 
creases. For saddle-point flows (c = -0.5), they 
decrease as g, increases until ga = gz and then 
increase with gW. The dividing streamline velocity in 
the _Y direction ((P’)~+~,~_~ increases when the wall 
temperature gr is increased slightly fromg, = 0.1. But, 
for further increase in gW, it decreases rapidly up to a 
certain value and then increases slowly as gW tends to 1. 

-0.4 - 
Pr= 0.7,g,,,=O.6, w ~1.0 

FIG. 9. EKect of the body configuration c on the velocity and enthalpy at the dividing streamline. 
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2.5 

FIG. 10. Variation of the location of the dividing streamline with body configuration c 

The effect of g, on the location of dividing stream- 
line (q)f+C,P=o is shown in Fig. 12. It increases as gW 
increases. Further, an increase in blowing rate shifts 
the location of dividing streamline away from the wall 
for all wall temperature conditions. 

CONCLUSIONS 

The effect of massive blowing is to move the dividing 
streamline away from the surface. The effect of the 
variation of the density- viscosity product across the 
boundary layer (i.e. variable gas properties) is found to 

be negligible for large blowing rates. However, they are 

found to be significant for moderate blowing rates. The 
velocity and enthalpy profiles in the saddle-point 
region (- 1 5 c < 0) for large blowing rates show 
some interesting features not encountered in nodal- 
point region (0 2 c 2 1). In this region, the velocity 
profiles in the x direction have velocity overshoot and 
the velocity profiles in the y direction have both reverse 
flow and velocity overshoot and they increase as the 
blowing rates increase. There is also an enthalpy 
overshoot which increases as the blowing rate in- 

creases. For massive blowing case, we find that the 
boundary layer consists of a relatively thick inner layer 

FIG. 11. Effect of wall temperature on the velocity and enthalpy at the dividing streamline. 
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6 Pr= 0.7, f,=-10, w=1 

2 
0.1 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 

QW Qw 

FK;. 12. Variation of the location of the dividing streamline with wall temperature. 

with zero heat transfer and negligible skin friction and 
a relatively thin outer layer adjusting the inner and 
external News. Here the results of ref. [12] have been 
extended to the case of saddle points of attachment by 
using parametric differentiation in place of quasi- 
demotion employed in ref. [IZ]. The present method 
enables us to obtain the solution exactly for massive 
bIowing rates for both saddle and nodal point regions 
which could not be obtained by previous investigators. 
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Resume-On etudie l’effet dun soafflage important sur l’ecoulement de couche limite compressible, avec des 
proprittes variables du gaz, au point d’arret tridimensionnel. Les equations du mouvement sont resolues 
numdriquement en utilisant un schema implicite aux differences llnies en combinaison avec la technique de 
quasi-linearisation pour les points nudaux d’attache, mais en employant une technique de differentiation 
paramitrique a la place de la quasi-liniarisation pour les points relatifs a une s&e. On montre que l’effet des 
grands debits de soumage est de deplacer la couche limite en I’tcartant de la surface. L’effet de la variation du 
produit masse volumique-viscositi a Wavers la couche limite est trouvt! n~~ligeable pour les grands debits de 
so&age, mais ii est sensible pour les debits mod&& Les profils devitesse dans ia direction trans\rersale pour 
les paints relatifs i une s&e en p&ewe de grands d&its de sou&ge montrent d b fois un boulement de 

retour et me survifesse, 

Zusammenfassung-Der Einflub starken Ausblasens aufdie station&m laminare kompressible Grenzschicht 
mit veranderlichen Stoffwerten dcs Gases am dreidimensionalen Staupunkt (unter EinschluR sowohl 
konvexer wie konkaver Anlagepunkte) wurde untersucht. Die Strtimungsglelchungen wurden numerisch 
mittels eines implizierten DifferenzenVerfahrens gelost-fur konvexe Anlagepunkte in Verbindung mit dem 
Quasilinearisierungsverfahren und fur konkave Anlagepunkte unter ersatzweiser Verwendung parametri- 
scher Differentiation, Als Auswirkun starken Ausbiasensergibt sich ein Abdrangen derzlhen Unterschicht 
von der Obertlache. Dee Einllubder a nderung des Dichte-Viskositats-Produkts quer zur Grenzschicht wird 
fur starkes Ausblasen vernachl&sigbar, ist aber bedeutend fur mP13iges Ausblasen. Rie Geschwindigkeitspr~ 
file in Querrichtung fur konkave An~~epnnkte zeigen hi starkem At&hen sow&f S~r~m~ngsumke~r als 

hlHOTWI~-~CCJfenOBaHO BJIHRNl(t! CKOPOCTA BHTeHCH6HOfO WyBa Bit yCTaHOBB6meeCB JIaM?-?Hapnoe 
resesee cxmtaebioro ra3a c nepe~emibr~~ cBoi%cTBahnB 8 rpex~epnol KpareqecKoB rovKe (BKnmrar 
paccMorpeHae KaK y3nosb~x, mK i! ccnnorrbrx ToYex npucoeaswem4n noT0ra). YpaBBeHBn nBB~euBff 
l,WIeHbI WICJIeHHO C nCnO,Ib3oBaHHeM neII8HOfi KOHe’IHO-pa3HOCTHOti CXQMU. MCnOJIb3OBaJIBCb TaK?Ke 
MeTon xBa3unaHeape3auae msI ynnoebrx r09eK npecoennueifm ti MewA napaMeTpurecrofi w@e- 

peHwaumi (BMeCTO masunrreeapmauns) J&m CeJUIOBbIX TOYeK npMCOenBHeHtfn IIOPOKB. Haiinewo, 
‘If0 nnu IIHTeHCABHOM BByBe BR3KW~ CJIOii OTTeCHseTCR OT nOBepXHOCTt% a Bl.MeHeHIfe npOn3BeReHIifi 
nnoTHoc~n Ha 8s3K0c~b noneper norpamnuIor0 cjlon npaKTBrecxn Be ~nmter B pemnMe BHTeHcnBtiorO 
BayI%a, Ho NMeeT CymeCTSeHtIOe 3iiaYeHBe nun yMe~HHbIX CKOROCTUX B,nyBa. Tt0 npO&.TBM CKOROCTB 
Jt.TB CClZIUBblX TOYCK ~p~~~~~~~~~~~ l?OTOXa I@B IIHTeBCBBHOM BWBO ~~a~oB~e~a BO3IIOB0iOCTC 


